

Norwich Western Link Drainage Strategy Report Appendix 8: Technical Note:NDR Basin 1A Drainage Analysis Document Reference: 4.04.08

Norwich Western Link

Drainage Strategy Report Appendix 8: Technical Note: NDR Basin 1A Drainage Analysis

Author: WSP

Document Reference: 4.04.08

Version Number: 00

Date: March 2024

Norwich Western Link Drainage Strategy Report Appendix 8: Technical Note:NDR Basin 1A Drainage Analysis Document Reference: 4.04.08

Contents

1	Introduction		2	2
---	--------------	--	---	---

1 Introduction

- 1.1.1 This document details the assessment undertaken on the capacity of the existing NDR basin 1A after applying updated climate change allowances. It concludes that there is capacity to contain the flows from the proposed NWL Basin 1 when discharged at 43 l/s rate and consequently infiltrate to the ground and that minimum freeboard requirements are met. It also confirms that the water quality assessment demonstrates that sufficient treatment has been provided for Basin 1 and Basin 1A.
- 1.1.2 We have included a summary of key information shown in this document in an accessible format. However, some users may not be able to access all technical details. If you require this document in a more accessible format please contact: norwichwesternlink@norfolk.gov.uk

TECHNICAL NOTE, Version 4

DATE:	02 August 2023	CONFIDENTIALITY:	Restricted
SUBJECT:	NDR Basin 1A Drainage Analysis, Revise	d	
PROJECT:	Norwich Western Link	AUTHOR:	Shiva Sharma
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

INTRODUCTION

This Technical Note has been prepared as an addendum to that prepared by WSP in 2020 to support a planning application for the proposed Norwich Western Link (Report Reference: PK1002-RAM-HDG-MLE-SG-DZ-0001_Ver1 Appendix 6 - WSP Technical Note). A copy of the 2020 Technical Note has been included in Appendix A.

The 2020 Technical Note showed that there is capacity within the existing NDR Basin 1A to contain the flows from the proposed NWL Basin 1 when discharged at a 43l/s rate and consequently infiltrate to the ground. The LLFA did not object to this approach (Norfolk County Council Ref: FW2020_0409). Since then, new Climate Change allowances guidance has been released by the Environment Agency which should be considered for this assessment.

This Technical Note addendum looks at the suitability of the NDR Basin 1A based on the latest guidance updates. The following aspects will be checked:

- The capacity of Basin 1A should be sufficient to accommodate overland flows from the rural catchment considering updated Climate Change allowances as well as the flows from Basin 1 (43l/s).
- Design freeboards of 300mm should be achieved.
- The proposed surface water drainage design needs to address all four pillars of SuDS in line with Schedule 3 requirements for existing and proposed surface water drainage features.

This addendum also includes a review of the datasets, guidance and methods used in the 2020 Technical Note and will conclude whether the most up to date information and methodology has been used.

DESIGN STANDARD AND METHODOLOGY CHECK

As part of the 2020 Technical Note, the methodology used to assess the existing capacity of the NDR Basin 1A included:

1. Review of the existing FRA, including the extent of the Flood Estimation Handbook¹ (FEH) catchment used for sizing NDR Basin 1A.

This remains unchanged, this step is used to work out the capacity of the existing NDR Basin 1A, as calculated before.

¹ <u>https://fehweb.ceh.ac.uk/</u>

2. Review of area and topography of the catchment draining into NDR Basin 1A using 1m DTM (Environment Agency data).

A Google maps desktop analysis show no changes to the catchment. The area of the catchment draining into the NDR Basin 1A has been increased by 3.01 ha being the new total area of 117.01 ha.

3. Updated the existing catchment descriptors for the NDR Basin 1A and adjusted in line with current land use.

The catchment descriptors and land uses remain the same since 2020.

4. Estimated the Greenfield run off received using the Revitalised flood hydrograph (ReFH) method.

ReFH still applies. Later this year 2023 ReFH2 will be released, however for this current addendum, ReFH still applies.

5. Modelled the catchment draining into the NDR Basin 1A using Micro-Drainage.

The Micro-Drainage model has been updated using the latest Climate Change allowances.

6. Estimation of the time to peak for the 1 in 100-year (1% Annual Exceedance Probability), 24 hour duration storm event (storm duration used in NDR FRA).

The 2020 Technical Note states that an analysis in Micro-Drainage was performed to understand the capacity of the basin using the 1% Annual Exceedance Probability (AEP) including a 40% Climate Change allowance. Updated catchment-based climate change allowances² have been released by the Environment Agency. Basin 1 and Basin 1A are within the Broadlands Rivers Management Catchment. For this catchment a Climate Change uplift of 40% should be allocated to the 3.33% AEP rainfall event and a Climate Change uplift of 45% should be allocated to the 1% AEP rainfall event. Those changes have been modelled in Micro-Drainage to understand the capacity of the basin. Calculations have been included within Appendix C.

² Flood Risk Assessments: climate change allowances, EA 2022

Figure 1 NDR Basin 1A and Basin 1. Plan showing location of these basins within the NWL scheme

RESULTS

The present analysis has evaluated the current capacity of NDR Basin 1A using the most up to date datasets. The Micro-Drainage assessment has been undertaken using the same parameters that were used in 2020 technical note and using the updated catchment area (catchment area of 117.01ha, discharge rate of 43I/s from NWL Basin 1 to Basin 1A, site-specific infiltration rate of 0.432 m/hr, factor of safety of 5 and excluded infiltration via the base of the basin). Latest EA Climate Change allowances have been applied for the calculations. The results show the following:

• Updated Greenfield runoff rates are shown in Table 1:

Return Period	Greenfield runoff rates (l/s)
Qbar	48.3
1 in 1 year	42.07
1 in 30 years	118.4
1 in 100 years	172.2
1 in 200 years	203.6

Table 1 – Greenfield runoff rates obtained for the catchment.

- The maximum volume for 3.33% AEP rainfall event with 40% Climate Change uplift is 2957.3m³ (below existing basin capacity of 7665m³) and the maximum water depth is 0.898m (below existing basin depth of 2m).
- The maximum volume for 1% AEP rainfall event with 45% Climate Change uplift is 4384.3m³ and the maximum water depth is 1.262m. The half drain time is 1323 min (22 hours). This meets the LLFA requirement of half drain time below 24 hours. This confirms that the existing basin currently has a freeboard of approximately 0.74m, with additional capacity of approximately 3280.7m³.

Discharge rates from NWL Basin 1 to Basin 1A has not changed since 2020. The modelled discharges from NWL Basin 1 to Basin 1A are shown in Table 2 below:

Flow Control (I/s)	Approximate attenuation volume (m ³) required in NWL Basin 1	Maximum depth of water (m) above base of NDR Basin 1A in critical storm - from controlled highway discharge (NWL Catchment 1)
5	3,500	0.04
14	2,900	0.1
43	2,200	0.25
272	1,100	0.5
Unrestricted	0	0.57

Table 2 – NWL Basin 1 and NDR Basin 1A design aspects

These outcomes indicate that a controlled discharge of 43 litres/ second would provide a reasonable balance between the required storage volume in NWL Basin 1 (sediment forebay) and the maximum depth of water in NDR Basin 1A. Accounting for the existing overland flow from the NDR (storage volume of 4384.3m³ and water depth of 1.262m for the 1% AEP rainfall event with 45% Climate Change uplift) the available freeboard in NDR Basin 1A is approximately 0.488m in this scenario.

In addition to the capacity assessment, both basins should address all four pillars of SuDS in line with Schedule 3 requirements for existing and proposed surface water drainage features. The interim drainage network water quality assessment completed in March 2023 has evaluated Basin 1 describing the treatment provision and outfall mechanisms. According to this assessment the proposed drainage system provides sufficient treatment based on the justification and assessments that have been undertaken. Further details can be found within Appendix B.

CONCLUSION

The assessment has confirmed that NDR Basin 1A is still fit for purpose and has sufficient capacity after applying updated Climate Change allowances for both 3.33%AEP and 1%AEP flood events. The available freeboard is 0.488 m satisfying the minimum 300mm freeboard requirements.

The recent water quality assessment report undertaken in line with CIRIA Report 142: 'Control of Pollution from Highway Drainage Discharges' demonstrated that sufficient treatment has been provided for Basin 1 and Basin 1A.

APPENDIX A: 2020 TECHNICAL NOTE – NDR BASIN 1A DRAINAGE ANALYSIS

DA E:	14 May 2020	CONFI ENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, V rsion 2		
PROJECT:	Norwich West rn Link	AUTHOR:	Amina Sh ikh- sman
CH CKE :	Sol dad B rb I Roman	APPROV D:	Simon Gilliland

INTRO UC ION

Th Norwich Western Link road (NWL) Scheme consists of a 3.9-mile dual carriageway link from the roundabout at the western end of Broadland Northway, formerly known as the Northern Distributor Road (NDR) to the A47 west of Norwich.

The rout of the NWL pass is through a rural area and intersects a number of hydrological catchments along its length. These hydrological catchments are defined principally by local topography and existing drainage features such as water courses or land drains. The existing catchments intersected by the NWL are shown on Figure 1 along with an indicative flow direction indicating the general fall of the catchment.

Figure 1 – Hydrological catchments along th NWL

DA E:	14 May 2020	CONFI ENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, V rsion 2		
PROJECT:	Norwich West rn Link	AUTHOR:	Amina Sh ikh- sman
CH CKE :	Sol dad B rb I Roman	APPROV D:	Simon Gilliland

Du to the nvironm ntal s nsitivity of th River Wensum, an alternativ option of discharging to existing NDR drainage featur s was explored. This has identified that ther is scope to discharg to th existing 'NDR Basin (Lagoon) 1A' as d fined in the Flood Risk Assessment (FRA) for the Northern Distributor Road (NDR) prepared by Mott MacDonald in 2014 (ref. TR010015, Doc. 6.2). This basin was designed to contain overland flow only, with no contribution of runoff from th NDR.

This basin is preferred on the basis of accessibility; available land should the basin n ed to be upsized; and the potential for existing capacity within the basin to be utilised without the need for upsizing. An indicative plan showing how th existing NDR Basin 1A will be utilis d is shown in Figure 2.

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

Methodology

The following steps have been taken to assess existing capacity of NDR Basin 1A.

- 1. Review of the existing FRA, including the extent of the Flood Estimation Handbook¹ (FEH) catchment used for sizing NDR Basin 1A.
- 2. Review of area and topography of the catchment draining into NDR Basin 1A using 1m DTM (Environment Agency data).
- 3. Updated the existing catchment descriptors for the NDR Basin 1A and adjusted in line with current land use.
- 4. Estimated the Greenfield run off received using the Revitalised flood hydrograph (ReFH) method.
- 5. Modelled the catchment draining into the NDR Basin 1A using Micro-Drainage.
- 6. Estimation of the time to peak for the 1 in 100-year (1% Annual Exceedance Probability), 24 hour duration storm event (storm duration used in NDR FRA).

Results are discussed in the next section.

RESULTS

As stated within the FRA, NDR Basin 1A was designed to contain overland flow only, with no runoff contribution from the carriageway. The favourable infiltration rates obtained at this location allow the feature to drain via infiltration to ground. The basin was sized to accommodate a 100-year return period storm event with an additional allowance of 30% climate change, plus a minimum freeboard of 300mm.

The present analysis has evaluated the current capacity of NDR Basin 1A using up to date datasets, guidance and methods; and only follows a similar approach to that taken in the NDR FRA where appropriate. The catchment boundary has been digitised in QGIS using a DTM of 1m resolution. The initial analysis indicated a catchment draining area of approximately 100 ha. The catchment extent has been reviewed after conversations with the LLFA, and a conservative approach has been taken using a catchment of 114ha.

Figure 3 illustrates the location of this catchment and the overland flow generated by a GIS watershed analysis.

¹ <u>https://fehweb.ceh.ac.uk/</u>

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

Figure 3 – NDR Basin 1A, plan showing its incorporation with the NWL scheme

Up to date hydrological catchment descriptors were obtained from the FEH² Web service mapping. Catchment descriptors were checked against UK soil maps and the British Geological Survey³ Geology of Britain viewer. The BFIHOST value of 0.886 indicates permeable underlaying strata – Geological

lexicon: *Lewes Nodular Chalk Formation, Seaford Chalk Formation, Culver Chalk Formation and Portsdown Chalk Formation.* A review of existing Ordnance Survey (OS) mapping suggests minimal attenuation in the catchment, correlating well to the FEH's FARL value of 1. URBEXT2000 has been slightly adjusted to represent the increased urbanisation in the catchment. The revised catchment descriptors are presented within Appendix A.

The ReFH method has been used to generate the rainfall and the flood hydrograph for a 1 in 100-year, 24-hour storm duration event shown in Figure 4 (this is consistent with the storm event used in the NDR FRA). Greenfield runoff results for the catchment are presented in Table 1.

² <u>https://fehweb.ceh.ac.uk/</u>

³ <u>http://mapapps.bgs.ac.uk/geologyofbritain/home.html</u>

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

Figure 4 – Parameters for the ReFH model (rural catchment) and hydrograph

Rainfall			Loss Mod	lel	Routing Mod	el	Baseflow Mod	iel
Flood Return Period: DDF Rainfall Depth:			Cmax:		Tp (0):		BL:	
100.000	91.028		704.517	7	2.524		46.002	
Duration:	Design	Rainfall:	Cini:		Up:		BR:	
23.500	62.047		0.000		0.650		2.159	
Time Step:	ARF:		αfactor		Uk:		BF0:	
0.500	0.988		0.830		0.800		0.000	
Season:	SCF:							
WINTER	0.690							
Recommende	d duration:	4.111	View Text	ual Summary				
Recommende	d timestep:	0.25 - 0.50		Data	Hydrograp	bh	F	Plot
Time (hrs)	Design Rainfa	Loss Factor	Net Rainfall	Unit Hydrogra;	Direct Run Off	Baseflow	Total Flow	^

time (nrs)	Design Kainra	Loss Factor	Net Kainfall	Unit Hydrograf	Direct Run Off	Dasenow	Total Flow	<u> </u>
0.000	0.258	0.000	0.000	0.000	0.000	0.000	0.000	
0.500	0.291	0.001	0.000	0.007	0.000	0.000	0.000	
1.000	0.329	0.001	0.000	0.021	0.000	0.000	0.000	
1.500	0.371	0.002	0.001	0.035	0.000	0.000	0.000	
2.000	0.418	0.002	0.001	0.049	0.000	0.000	0.000	
2.500	0.472	0.003	0.001	0.063	0.000	0.000	0.000	
3.000	0.532	0.003	0.002	0.067	0.000	0.000	0.000	~

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

Table 1 – Greenfield runoff rates obtained for the catchment

Return Period	Greenfield runoff rates (I/s)
Qbar	47.1
1 in 1 year	41.0
1 in 30 years	115.4
1 in 100 years	167.8
1 in 200 years	198.4

The sizing of the existing NDR Basin 1A has been estimated using the site-specific infiltration rate (0.432 m/hr); a factor of safety of 5 for the analysis of the infiltration basin (as per the guidance in CIRIA C753); and infiltration via the base of the basin has also been excluded (further to discussions around best practice with the LLFA). This is consistent with the approach agreed with the LLFA for all infiltration basins on the NWL. The depth of the existing basin is 2m and the total storage volume is 7,665m³ (including 0.3m freeboard).

An analysis in Micro-Drainage has been performed to understand the capacity of the basin. The results indicate that the half drain time of the basin is 1,379 minutes (23 hours); therefore, meeting the LLFA requirements of half drain time below 24 hours. The maximum volume required to contain a 1 in 100 year plus 40% climate change event is 4,632m³, for the critical 720-minute (12 hour) storm, reaching a maximum water depth of 1.3m. Following the current guidance in C753, a 360-minute (6 hour) storm event would require a basin storage volume of 4,327 m³ and generate a water depth of 1.25m.

Therefore, the above analysis confirms that the existing basin currently has a freeboard of approximately 0.7m, with additional capacity of approximately 3,350m³. A summary of the results is shown in Figure 5. A detailed summary of the Micro-Drainage results is included in Appendix B.

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

Figure 5 – Micro-Drainage results indicating required storage volume in NDR Basin 1A in a 1 in 100 year plus 40% climate change storm.

<u>Summary</u>	of	Resul	ts for	100	year Return	Perio	<u>d (+40%)</u>
	Stor Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Volume (m³)	Status
30	min	Winter	15.676	0.676	20.3	2153.7	ΟK
60	min	Winter	15.820	0.820	23.0	2669.2	O K
120	min	Winter	15.989	0.989	27.5	3298.4	O K
180	min	Winter	16.092	1.092	30.2	3697.7	O K
240	min	Winter	16.162	1.162	32.1	3976.7	O K
360	min	Winter	16.248	1.248	33.9	4327.4	O K
480	min	Winter	16.293	1.293	34.6	4510.7	O K
600	min	Winter	16.315	1.315	34.9	4599.3	O K
720	min	Winter	16.322	1.322	35.1	4631.6	OK
960	min	Winter	16.314	1.314	34.9	4595.4	O K
1440	min	Winter	16.269	1.269	34.2	4412.1	O K
2160	min	Winter	16.205	1.205	33.2	4153.1	O K
2880	min	Winter	16.145	1.145	31.7	3910.9	O K
4320	min	Winter	16.041	1.041	28.9	3500.1	O K
5760	min	Winter	15.956	0.956	26.6	3174.9	O K
7200	min	Winter	15.892	0.892	24.9	2933.7	O K
8640	min	Winter	15.840	0.840	23.6	2741.8	ΟK
10080	min	Winter	15.796	0.796	22.5	2583.0	O K

The 'As Built' drawings for the existing NDR indicate that the catchment runoff is intercepted by a French drain (Pre-Earthworks Drainage, PED) running along the northern side of the NDR. It is expected that this feature will attenuate and support shallow infiltration prior to discharging into NDR Basin 1A. Attenuation and infiltration within the French drain has not currently been included in the model, due to; a lack of available data on the condition of the asset; and the presence of a trench lining along a short length of the drain. However, reasonably if included this would further reduce the required storage volume.

\\SD **TECHNICAL NOTE**

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

CONCLUSIONS

The assessment is based on the design work undertaken and considers the land available adjacent to the A1067. It demonstrates that is possible to discharge runoff from the NWL to NDR Basin 1A without altering the size of the basin. An additional proposed attenuation basin with integral sediment forebay (NWL Basin 1) adjacent to the A1067, will intercept runoff from NWL Catchment 1 and discharge this to NDR Basin 1A.

The modelled discharges shown in Table 2, indicate that a controlled discharge rate of 43 litres/ second would provide a reasonable balance between the required storage volume in NWL Basin 1 (sediment forebay) and the maximum depth of water in NDR Basin 1A. Accounting for the existing overland flow from the NDR (storage volume of 4,327 m³ and water depth of 1.25m) the available freeboard in NDR Basin 1A is approximately 0.5m in this scenario.

Table 2 – NWL Basin 1 and NDR Basin 1A design aspects

Flow Control (I/s)	Approximate attenuation volume (m ³) required in NWL Basin 1	Maximum depth of water (m) above base of NDR Basin 1A in critical storm - from controlled highway discharge (NWL Catchment 1)
5	3,500	0.04
14	2,900	0.1
43	2,200	0.25
272	1,100	0.5
Unrestricted	0	0.57

The assessment doesn't account for the following factors which further strengthen the case for utilising the existing NDR Basin 1A for runoff from the NWL:

- The significant difference in times to peak (see Appendix C for NDR overland flow catchment) which would result in a lag time of approximately 6 hours between the two catchments;
- A basin half drain time of less than 24 hours; ullet
- Attenuation and infiltration within the French drain (Pre-Earthworks Drainage) along the northern side of the NDR that intercepts overland flow and conveys it to NDR Basin 1A.

This option is subject to further design development and the discharge rate is subject to agreement with the LLFA. NWL Basin 1 is also subject to appropriate pollution control measures in line with CIRIA 142-"Control of pollution from highway drainage discharge will also be subject to a revised Highways England Water Risk Assessment Tool (HEWRAT).

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

APPENDIX A: REVISED CATCHMENT DESCRIPTORS

Catchment Desc	riptors	Value
AREA	Catchment area (km ²)	1.14
ALTBAR	Mean catchment altitude (m above sea level), derived from the IHDTM	37
ASPBAR	Index representing the dominant aspect of catchment slopes (°)	217
ASPVAR	Index representing the invariability in aspect of catchment slopes (°)	0.15
BFIHOST	Base Flow Index derived using the HOST soil classification	0.886
DPLBAR	Mean of distances between each node on the IHDTM grid and the catchment outlet, in kilometres. Used to characterise catchment size and configuration	1.31
DPSBAR	FEH index of overall catchment steepness	27.4
FARL	FEH index of flood attenuation dur to reservoirs and lakes	1
FPEXT	Fraction of the catchment that is estimated to be inundated by a 100- year flood	0.0491
FPDBAR	The mean depth of water on floodplains in a 100-year event	0.167
FPLOC	The location of floodplains within the catchment is described using the same principles employed to derive values of the FEH index URBLOC	0.956
LDP	Longest drainage path (in kilometres), defined by recording the greatest distance from a catchment node to the defined outlet	2.67
PROPWET	FEH catchment wetness index	0.31
RMED-1H		11.3
RMED-1D		27.8
RMED-2D		36.1
SAAR	Average annual rainfall in the standard period (1961-1990) in millimetres. (SAAR4170 is from 1941 to 1970)	629
SAAR4170		638
SPRHOST	Standard percentage runoff (%) associated with each HOST soil class	15.44
URBCONC1990	Index of the concentration of urban and suburban land cover in 1990 expressed as a fraction.	0.389
URBEXT1990	Index of urban and suburban land cover in 1990 expressed as a fraction	0.0098
URBLOC1990	Index of the location of urban and suburban land cover in 1990 expressed as a fraction.	1.053

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

URBCONC2000	Index of the concentration of urban and suburban land cover in 2000 expressed as a fraction.	0.759
URBEXT2000	Index of urban and suburban land cover in 2000 expressed as a fraction	0.0311
URBLOC2000	Index of the location of urban and suburban land cover in 2000 expressed as a fraction.	1.09
С		-0.02364
D1		0.28686
D2		0.34361
D3		0.2507
E		0.31324
F		2.46977
C(1 km)		-0.024
D1(1 km)		0.284
D2(1 km)		0.359
D3(1 km)		0.248
E(1 km)		0.311
F(1 km)		2.478

Source: Institute of Hydrology. 1999. Flood Estimation Handbook, 5 volumes and associated software. Institute of Hydrology

DATE:	14 May 2020	CONFIDENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, Version 2		
PROJECT:	Norwich Western Link	AUTHOR:	Amina Sheikh-Osman
CHECKED:	Soledad Berbel Roman	APPROVED:	Simon Gilliland

APPENDIX B: MICRO-DRAINAGE RESULTS

WSP Group Ltd							Page 1
•							
5							
							Micco
Date 05/05/2020	11:13		Designed	by SBR			Desire
File			Checked	by SG			Ulding
(P Solutions			Source C	optrol 20	19.1		-
		52	DOULCE D	211 Sec. 10 de			
Sum	mary of Resu	lts fo	r 100 ve	ar Return	. Period	1 (+40%)	
100 COL 10			1			1.1.1.1.1	
	Hal	f Drain	Time : 1	379 minute	5.		
	Storm	Мах	Max	Max	Max	Status	
	Event	Level	Depth In	filtration	Volume	0.0000000000000000000000000000000000000	
		(m)	(m)	(1/s)	(m*)		
	15 min Summer	15.47	7 0.477	16.3	1465.9	οĸ	
	50 min Summer	15.01	0 0.810	19.2	2380 0	OK	
	120 min Summer	15.90	1 0 804	24.2	2300.0	OR	
	180 min Summer	15.09	7 0,987	27.4	3293 6	OK	
	240 min Summer	16.05	1 1.051	29.1	3539.6	OK	
	360 min Summer	16,12	9 1.129	31.2	3844.9	OK	
	480 min Summer	16.16	7 1.167	32.3	3998.1	O K	
	600 min Summet	16.18	4 1.184	32.7	4065.8	O K	
	720 min Summer	16.18	8 1.188	32.8	4083.0	οĸ	
	960 min Summer	16.17	6 1.176	32.5	4034.8	οĸ	
	1440 min Summer	: 16.14	5 1.145	31.7	3911.3	O K	
	2160 min Summer	16.09	6 1.096	30.3	3716.7	O K	
	2880 min Summet	16.05	1 1.051	29.1	3539.9	0 K	
	4320 min Summer	15.97	5 0.975	27.1	3245.2	ок	
	5760 min Summet	15.91	3 0.913	25.5	5011.3	OK	
	F640 min Summer	- 15 83	2 0.007	24.5	2043.4	OK	
1	0080 min Summer	- 15 RO	3 0 803	22.4	2608 6	OK	
1.5	15 min Winter	15.52	9 0.529	17.4	1642.4	o ĸ	
	Sto	rm	Rain	Flooded Ti	ime-Peak		
	Eve	nt	(mm/hr)	Volume	(mins)		
				(m ³)			
	15 mir	1 Summe	r 148.960	0.0	27		
	30 mit	. Summe	r 98.000	0.0	41		
	60 mi:	1 Summe	r 61.180	0.0	70		
	120 mir	1 Summe	r 38.360	0.0	130		
	180 min	a Summe	r 29.087	0.0	188		
		Summe r	r 23,800	D.D	248		
	240 mit	a no contraction			205		
	240 mit 360 mit	n Summe	r 17.757	0.0	366		
	240 mir 360 mir 480 mir	n Summe n Summe	r 17.757	0.0	366 484		
	240 min 360 min 480 min 600 min 720 min	n Summe n Summe n Summe	r 17.757 r 14.265 r 11.953 r 10.302	0.0	366 484 602 722		
	240 min 360 min 480 min 600 min 720 min 960 min	n Summe n Summe n Summe n Summe	r 17.757 r 14.265 r 11.953 r 10.302	0.0 0.0 0.0 0.0	366 484 602 722		
	240 mir 360 mir 480 mir 500 mir 720 mir 960 mir 1440 mir	n Summe n Summe n Summe n Summe n Summe n Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688	0.0 0.0 0.0 0.0 0.0	366 484 602 722 880 1112		
	240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir	n Summe n Summe n Summe n Summe n Summe n Summe n Summe n Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688 r 3.971	0.0 0.0 0.0 0.0 0.0 0.0	366 484 602 722 880 1112 1500		
	240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir	n Summe n Summe n Summe n Summe n Summe n Summe n Summe n Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688 r 3.971 r 3.080	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	366 484 602 722 880 1112 1500 1908		
	240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir	a Summe a Summe a Summe a Summe a Summe a Summe a Summe a Summe a Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688 r 3.971 r 3.080 r 2.167	0.D 0.0 0.D 0.D 0.D 0.D 0.D 0.D 0.D	366 484 602 722 880 1112 1500 1908 2732		
	240 mir 360 mir 480 mir 500 mir 720 mir 960 mir 2440 mir 2880 mir 4320 mir 5760 mir	a Summe a Summe a Summe a Summe a Summe a Summe a Summe a Summe a Summe a Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688 r 3.971 r 3.080 r 2.167 r 1.703	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	366 484 602 722 880 1112 1500 1908 2732 3568		
	240 mir 360 mir 480 mir 720 mir 960 mir 2440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	a Summe a Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688 r 3.971 r 3.080 r 2.167 r 1.703 r 1.431	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	366 484 602 722 880 1112 1500 1908 2732 3568 4336		
	240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 5760 mir 8640 mir	a Summe a Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688 r 3.971 r 3.080 r 2.167 r 1.703 r 1.431 r 1.252	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	366 484 602 722 880 1112 1500 1908 2732 3568 4336 5184		
	240 mir 360 mir 480 mir 500 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 8640 mir 10080 mir	A Summe A Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688 r 3.971 r 3.080 r 2.167 r 1.703 r 1.431 r 1.252 r 1.126	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	366 484 602 722 880 1112 1500 1908 2732 3568 4336 5184 5952		
	240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2880 mir 4320 mir 5760 mir 7200 mir 8640 mir 10080 mir 15 mir	A Summe A Summe	r 17.757 r 14.265 r 11.953 r 10.302 r 8.081 r 5.688 r 3.971 r 3.080 r 2.167 r 1.703 r 1.431 r 1.252 r 1.126 r 148.960	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	366 484 602 722 880 1112 1500 1908 2732 3568 4336 5184 5952 27		

DA E:	14 May 2020	CONFI ENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, V rsion 2		
PROJECT:	Norwich West rn Link	AUTHOR:	Amina Sh ikh- sman
CH CKE :	Sol dad B rb I Roman	APPROV D:	Simon Gilliland

WSP Group Ltd							Page 2
53							Sel-
19							The second second
	13	1125		L. CDD			MICLO
Date 03/03/2020 11:	1.0	D	earqueu	лас үс			Drainage
File		C	hecked	by SG			
XP Solutions		S	ource C	ontrol 2	2019.1		
Summary	of Result	s for	: 100 ye	ar Retu	rn Perio	d (+40%)	
Basson and State		N - 2220	1753 <u>- 1834 - 18</u> 70				
	Storm	Мах	Max	Max	Max	Status	
	Zvent	Level	Depth I	nfiltrati	on Volume		
		(m)	(m)	(1/s)	(m*)		
				0.000488048			
30	min Winter	15.676	0.676	20	.3 215317	OK	
60	min Winter	15.820	0.820	23	.0 2669.2	OK	
120	min Winter	15.989	0.989	27	.5 3298.4	O K	
180	min Winter	16.092	1.092	30	.2 3697.7	o ĸ	
240	min winter	10.102	1.102	32	0 1207 -	O R	
001	min winter	16.245	1.240	22	5 4327.4 6 ASIS T	O K	
460	min Winter	16.315	1, 315	24	.9 1590.7	0 8	
720	min Winter	16.322	1. 172	35	1 4637 5	O R	
960	min Winter	16.314	1.314	34	.9 4595.4	OK	
1440	min Winter	16,269	1.269	34	.2 4412.1	οκ	
2160	min Winter	16.205	1.205	33	.2 4153.1	OK	
2860	min Winter	16.145	1.145	31	.7 3910.9	O K	
4320	min Winter	16.041	1.041	28	.9 3500.1	O K	
5760	min Winter	15.956	0.956	2.6	.6 3174.9	O K	
7200	min Winter	15.892	0.892	24	.9 2933.7	O K	
8640	min Winter	15.840	0.840	-23	.6 2741.8	OK	
10080	min Winter	15.796	0.796	22	.5 2583.0	O K	
	Storr	n	Rain	Flooded	Time-Peak		
	Event	50 E	(mm/hr)	Volume	(mins)		
				(m')			
	30 min	Winter	98.000	0.0	25		
	60 min	Winter	61.180	0.0	70		
	120 min	Winter	38.360	0.0	128		
	180 min.	Winter	29.087	0.0	186		
	240 min	Winter	23.800	0.0	244		
	360 min	Winter	17.757	0.0	360		
	480 min	Winter	14.265	0.0	474		
	600 min	Winter	11.953	0.0	588		
	720 min	Winter	10.302	0.0	700		
	960 min	Winter	8.081	0.0	916		
	1440 min	Winter	5.688	0.0	1154		
	2160 min	Winter	3.971	0.0	1604		
	2080 min	Winter	3.080	0.0	2052		
	9329 MIN 5760	Minter Minter	1.10/	0.0	7944		
	7200 min	winter Winter	1.703	0.0	2000 261.6		
	8640 min	Winter	1.252	0.0	5448		
	10080 min	Winter	1.126	0.0	6256		
	101203000000000000000000000000000000000	1983.4699	20014	524.753			
-			0.010 T				
	1	01982	-2019 In	novyze			

DA E:	14 May 2020	CONFI ENTIALITY:	Internal
SUBJECT:	NDR Basin 1A Drainage Analysis, V rsion 2		
PROJECT:	Norwich West rn Link	AUTHOR:	Amina Sh ikh- sman
CH CKE :	Sol dad B rb I Roman	APPROV D:	Simon Gilliland

2000.000 100.000.000 . 000.000.0000				Page 3	
8					
14 1				The second	
				Micro	
Date 05/05/2020 11:13	Designe	ed by SBR		Desinado	
File	Checked	i by SG		Diamaye	
XP Solutions	Source	Control 2019.1			
	Model De	tails			
22			5		
E E	orage is unline Love	er Level (m) 17.000			
	Infiltration Ba	sin Structure			
	Infiltration Ba	sin Structure			
	Infiltration Ba.	sin Structure (m) 15.000 safety	Factor 5.0		
Infiltration C	Infiltration Ba Invert Level Coefficient Base (m/	<u>sin Structure</u> (m) 15.000 safety hr) 0.00000 Pc	Pactor 5.0 rosity 1.00	1	
Infiltration C Infiltration C	Infiltration Ba. Invert Level Coefficient Base (m/ Coefficient Side (m/	<u>sin Structure</u> (m) 15.000 safety hr) 0.00000 Pc hr) 0.43200	Factor 5.0 rosity 1.00)	
Infiltration C Infiltration C Depth (m) Area (m ²) De	Infiltration Ba. Invert Level Coefficient Base (m/ Coefficient Side (m/ Opth (m) Area (m ³)	sin Structure (m) 15.000 Safety hr) 0.00000 Pc hr) 0.43200 epth (m) Area (m ³)	Factor 5.0 rosity 1.00 Depth (m) :)) Area (m ³)	
Infiltration C Infiltration C Depth (m) Area (m ²) De	Infiltration Ba. Invert Level Coefficient Base (m/ Coefficient Side (m/ Opth (m) Area (m ³)	sin Structure (m) 15.000 Safety hr) 0.00000 Pr hr) 0.43200 epth (m) Area (m ³)	Factor 5.0 rosity 1.00 Depth (m) :)) Area (m ²)	
Infiltration of Infiltration of Depth (m) Area (m ²) De 0.000 2697.0 0.200 3050.0	Infiltration Ba. Invert Level coefficient Base (m/ coefficient Side (m/ pth (m) Area (m ³) 1.400 4176.0 1.600 4403 p	sin Structure (m) 15.000 Safety hr) 0.00000 Pc hr) 0.43200 epth (m) Area (m ³) 2.800 0.0 3.000 0.0	Factor 5.0 rosity 1.00 Depth (m) : 4.200 4.400) Area (m ³) 0.0	
Infiltration 0 Infiltration 0 Depth (m) Area (m ²) De 0.000 2697.0 0.200 3050.0 0.400 3301.0	Infiltration Ba. Invert Level coefficient Base (m/ coefficient Side (m/ pth (m) Area (m ²) 1.400 4176.0 1.600 4403.0 3.800 4634.0	<u>sin Structure</u> (m) 15.000 safety hr) 0.00000 Pc hr) 0.43200 epth (m) Area (m ²) 2.800 0.0 3.000 0.0 3.000 0.0	Factor 5.0 rosity 1.00 Depth (m) : 4.200 4.400 4.600) Area (m ³) 0.0 0.0	
Infiltration of Infiltration of Depth (m) Area (m ²) De 0.000 2697.0 0.200 3050.0 0.400 3301.0 0.600 3480.0	Infiltration Ba. Invert Level coefficient Base (m/ coefficient Side (m/ mpth (m) Area (m ²) 1.400 4176.0 1.600 4403.0 1.800 4634.0 2.000 4869.0	sin Structure (m) 15.000 safety hr) 0.00000 Pr hr) 0.43200 epth (m) Area (m ²) 2.800 0.0 3.000 0.0 3.200 0.0 3.400 0.0	Factor 5.0 rosity 1.00 Depth (m) : 4.200 4.400 4.600 4.600 4.800) Area (m ³) 0.0 0.0 0.0 0.0	
Infiltration of Infiltration of Depth (m) Area (m ²) De 0.000 2697.0 0.200 3050.0 0.400 3301.0 0.600 3480.0 0.800 3619.0	Infiltration Ba. Invert Level coefficient Base (m/ coefficient Side (m/ pth (m) Area (m ³) 1.400 4176.0 1.600 4403.0 1.800 4634.0 2.000 4869.0 2.200 0.0	sin Structure (m) 15.000 Safety hr) 0.00000 Pr hr) 0.43200 epth (m) Area (m ³) 2.800 0.0 3.000 0.0 3.200 0.0 3.400 0.0 3.600 0.0	Factor 5.0 rosity 1.00 Depth (m) : 4.200 4.400 4.600 4.800 5.000) Area (m ³) 0.0 0.0 0.0 0.0 0.0	
Infiltration 0 Infiltration 0 0.000 2697.0 0.200 3050.0 0.400 3301.0 0.600 3480.0 0.800 3619.0 1.000 3834.0	Infiltration Ba. Invert Level coefficient Base (m/ coefficient Side (m/ pth (m) Area (m ²) D 1.400 4176.0 1.600 4403.0 1.800 4634.0 2.000 4869.0 2.200 0.0 2.400 0.0	sin Structure (m) 15.000 Safety hr) 0.00000 Pc hr) 0.43200 epth (m) Area (m²) 2.800 0.0 3.000 9.0 3.00 3.200 0.0 3.00 3.400 0.0 3.00 3.600 0.0 3.00	Factor 5.0 rosity 1.00 Depth (m) : 4.200 4.400 4.600 4.800 5.000	A rea (m³) 0.0 0.0 0.0 0.0 0.0 0.0	

RAPH FOR NDR BASIN 1A APPENDIX C: HYDROG

🖉 — Total flow: Beinit A. 🖓 — Besefow: Boundaryt 🖉 ----- Centinent: Boundaryt 🗋 — Uniting-ograph: Boundaryt 🖓 💼 Ceolor/Reinset: Boundaryt 🖉 💼 Nat Reinset: Boundaryt

TECHNICAL NOTE

DATE:

SUBJECT:

PROJECT:

CHECKED:

Time to peak: 17.5 hours Lag time: 6 hours

	1-	1.
		Ľ
	1	
	_	1.
		ľ
	-	
	-	•
	-	- "
	-	
.		

APPENDIX B: 2023 INTERIM SUMMARY OF DRAINAGE NETWORK WATER QUALITY ASSESSMENT

DATE:	15 March 2023	CONFIDENTIALITY:	Restricted
SUBJECT:	Interim Summary of Drainage Network Wa	ter Quality Assessment	t
PROJECT:	Norwich Western Link Road	AUTHOR:	Joanna Goodwin
CHECKED:	Thomas Eckhardt	APPROVED:	Chris Middleton

INTRODUCTION

This technical note briefly summarises the findings of the Drainage Network Water Quality Assessment for the Norwich Western Link Road for the purpose of supporting discussions between Ferrovial Construction, Norfolk County Council Infrastructure Delivery Team, and Norfolk County Council as Lead Local Flood Authority (LLFA).

This technical note is not intended to be included as part of the project deliverables or planning submission and is for the sole purpose as stated above.

DISCHARGE TO SURFACE WATERS

The Proposed Scheme proposes one direct discharge to Foxburrow Stream and one indirect discharge to the River Tud via the proposed drainage system serving the A47 North Tuddenham to Easton Dualling National Highways DCO Scheme.

The Drainage Network Water Quality Assessment for these outfalls used the Highways England¹ Water Risk Assessment Tool (HEWRAT). The proposed drainage design serving the Norwich Western Link Road was taken into consideration and is understood to comprise the following:

Basin	Outfall mechanism	Treatment provision
Basin 5	Outfall to Foxburrow Stream.	Grassed swales (lined) and catchpits to intercept silt and sediment at the edge of the carriageway. Sediment forebay with wetted area for planting. Penstock pollution control valve for spillage control.
Basin 6	Outfall to A47 surface water drainage system.	Grassed swales (lined) and catchpits to intercept silt and sediment at the edge of the carriageway. Sediment forebay with wetted area for planting. Penstock pollution control valve for spillage control.

The assessment demonstrates that these outfalls pass the HEWRAT with the inclusion of the proposed treatment measures.

¹ Now National Highways

DATE:	15 March 2023	CONFIDENTIALITY:	Restricted
SUBJECT:	Interim Summary of Drainage Network Wa	ter Quality Assessment	t
PROJECT:	Norwich Western Link Road	AUTHOR:	Joanna Goodwin
CHECKED:	Thomas Eckhardt	APPROVED:	Chris Middleton

INFILTRATION TO GROUND

Surface water runoff from the remainder of the Proposed Scheme is proposed to be discharged to ground via infiltration basins.

The Drainage Network Water Quality Assessment for these outfalls followed the methodology set out in Appendix C of the Design Manual for Roads and Bridges (DMRB) (LA 113). This assessment takes into consideration traffic flow, drainage area, annual average rainfall, ground conditions and depth to the groundwater table. Treatment features and the sensitivity of groundwater resources are not included in the assessment methodology. Instead the assessment indicates the likely risk to groundwater (low, medium or high) and recommends further assessment where risks are indicated to be medium or high.

All of the basins serving the Proposed Scheme were concluded to have a medium risk. Undertaking more detailed quantitative analysis of the Proposed Scheme was not considered likely to change the findings of this assessment and instead a qualitative review of the Proposed Scheme and sensitivity of receiving waters is recommended. This has been undertaken, taking the following information into account:

- Sensitivity of underlying groundwater resources
- Proposed treatment measures and existing drainage regime (where relevant)
- Sensitivity of downstream receptors

Proposed treatment measures and existing drainage regime

The proposed drainage design is understood to comprise the following:

Basin	Outfall mechanism	Treatment provision
Basin 1 (attenuation)	Outlet discharges into the existing Northern Distributor Road (NDR) Basin 2 which then discharges to ground.	50% of runoff passes through grassed swales (lined) upstream of basin and all runoff passes through catchpits to intercept silt and sediment at the edge of the carriageway.Sediment forebay with wetted area for planting.Pollution control valve for spillage control.
Basin 2	Infiltration to ground.	Grassed swales (lined) and roadside drainage ditches with attenuation to intercept silt and sediment at the edge of the carriageway. The drainage along the viaduct includes catchpits instead of grassed swales due to spatial constraints. Separate sediment forebay with wetted area for planting. Pollution control valve (isolation penstock) for spillage control.

vsp

TECHNICAL NOTE 1

DATE:	15 March 2023	CONFIDENTIALITY:	Restricted
SUBJECT:	Interim Summary of Drainage Network Wa	ter Quality Assessmen	t
PROJECT:	Norwich Western Link Road	AUTHOR:	Joanna Goodwin
CHECKED:	Thomas Eckhardt	APPROVED:	Chris Middleton

Basin	Outfall mechanism	Treatment provision
Basin A1067	Infiltration to ground.	Catchpits and deep-pot gullies to intercept silt and sediment at the edge of the carriageway. Separate sediment forebay with wetted area for planting. Pollution control valve (isolation penstock) for spillage control.
Basin 3	Infiltration to ground.	Grassed swales (lined), catchpits and roadside drainage ditches with attenuation to intercept silt and sediment at the edge of the carriageway. Separate sediment forebay with wetted area for planting. Pollution control valve (isolation penstock) for spillage control.
Basin 4	Infiltration to ground.	Grassed swales (lined), catchpits and roadside drainage ditches with attenuation to intercept silt and sediment at the edge of the carriageway. Separate sediment forebay with wetted area for planting. Pollution control valve (isolation penstock) for spillage control.

Surface water runoff from new sections of highway is understood to pass through two vegetated treatment trains (grassed swales and infiltration basin with sediment forebay) which will provide robust treatment of runoff. The base of the basins is assessed to remain a minimum of 1m above highest recorded groundwater levels and, as such, provides treatment via percolation through the soil layers as required by the DMRB and standard design practices. Features such as catchpits and gullies are not typically recognised as a treatment train. Spillage control measures are also not typically recognised as a treatment train but will be in place to manage spillage risks.

Grassed swales are not proposed for the section of highway that is realigning the existing A1067 road network, noting that this comprises a c.200m length of the existing carriageway. However, a review of the existing drainage regime serving this section of road indicates that surface water runoff currently infiltrates directly to ground via an unlined filter drain. It is also understood that this feature is unlikely to be well maintained and access for maintenance is poor. The proposed drainage system for this section of road comprises an infiltration basin with sediment forebay and with dedicated maintenance access. An additional 300mm depth of topsoil is also understood to be included in the base of this basin to provide additional treatment. The proposed drainage system is therefore not considered to pose greater risk to receiving waterbodies when compared to the current regime and may provide some benefit.

DATE:	15 March 2023	CONFIDENTIALITY:	Restricted
SUBJECT:	Interim Summary of Drainage Network Wa	ater Quality Assessmen	t
PROJECT:	Norwich Western Link Road	AUTHOR:	Joanna Goodwin
CHECKED:	Thomas Eckhardt	APPROVED:	Chris Middleton

Sensitivity of underlying groundwater resources and downstream surface waters

The Proposed Scheme is located within Zone 3 (Total Catchment) of a Source Protection Zone. This is associated with the Chalk Principal Aquifer that underlies the study area and not the shallow superficial deposits. The sensivitity of shallow groundwater in superficial deposits is deemed to be relatively low when considered in isolation, although the importance of these resources is elevated due to their connectivity with the underlying Principal Aquifer and River Wensum.

When considering the findings of the DMRB risk assessment, infiltration from Basins 1 and 2 and Basin A1067 is most likely to flow towards the River Wensum and not percolate to the Principal Aquifer. Infiltration from Basins 3 and 4 is more likely to percolate to the Principal Aquifer, but this is located at significant depth below the basins and therefore additional treatment will be provided in the overlying soils layers. The risk to the Principal Aquifer is therefore considered to be low and the proposed treatment systems are appropriate.

Hydrogeological assessments undertaken as part of the EIA show a high connectivity between surface water in the River Wensum, shallow groundwater in superficial deposits and the deeper Chalk aquifer in proximity of the Wensum. The River Wensum is the main and the most sensitive receptor of groundwater flow in this area. The potential risk of pollutants migrating towards the River Wensum via groundwater flow has therefore been assessed by applying HEWRAT and treating the discharge as a point source surface water outfall to the Wensum. The assessment demonstrates that these outfalls (independently and cumulatively) would pass the HEWRAT with the inclusion of the proposed treatment measures, noting that this has not considered the additional treatment provided by migration through soil layers and dilution in the shallow aquifer.

It is understood that a high-level overflow is proposed in Basin A1067 that would discharge surface water from the basin towards the River Wensum. It is understood that this is a risk management measure that would only come into use in the unlikely scenario that the basin exceeds design capacity and overflows, noting that exclusion of the overflow could pose risk to the safety of the carriageway. It is also understood that the overflow would discharge to a vegetated ditch upstream of the River Wensum and not to the Wensum itself. Given the findings of the HEWRAT assessment above and noting that this is a risk management measure that would occur during high flows (i.e. diluted discharge) the potential risk to the River Wensum is considered to be low.

SUMMARY

HEWRAT was applied to assess risks associated with the discharge of surface water runoff to surface water features and this assessment was passed with the inclusion of proposed treatment measures.

The assessment of risks to groundwater does not provide a pass/fail result as per the assessment of risks to surface waters, but instead provides a low, medium or high risk score that prompts the need for further assessment. All basins were indicated to be medium risk. Qualitative review and further adoption of the

DATE:	15 March 2023	CONFIDENTIALITY:	Restricted
SUBJECT:	Interim Summary of Drainage Network Wa	ater Quality Assessmen	t
PROJECT:	Norwich Western Link Road	AUTHOR:	Joanna Goodwin
CHECKED:	Thomas Eckhardt	APPROVED:	Chris Middleton

HEWRAT methodology has however indicated that the risk to the Principal Aquifer and River Wensum (as the sensitive receptors that could be affected by infiltration) is low; and based on professional judgement the proposed treatment measures are deemed to be sufficient to prevent unacceptable risk to the water environment.

As discussed with Ferrovial Construction and Norfolk County Council Infrastructure Delivery Team during our call on Monday 13th March, there is no known prescriptive guidance that stipulates the number of SuDS treatment trains required prior to discharge to surface water or groundwater. There therefore remains a risk that the relevant authorities may request additional treatment given the sensitivity of the identified receptors. In our opinion the proposed drainage system provides sufficient treatment based on the justification provided above and the assessments that have been undertaken.

APPENDIX C: MICRO-DRAINAGE RESULTS

WSP Group Ltd						Page 1
•						
•						
•						Micro
Date 02/08/2023 16:48	D	esigne	d by SS			
File 1 in 100 with 45 cc.SRC	x c	Checked	bv SBR			Dialitaye
VP Solutions		1011700	Control	2010 1		
	5	ource	CONTROL 2	2019.1		
Summary of Result:	<u>s for</u>	<u>: 100 y</u>	<u>ear Retu</u>	rn Peric	<u>od (+45%)</u>	
Half	Drain	Time :	1339 minute	es.		
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth 1	Infiltratio	on Volume		
	(m)	(m)	(1/s)	(m³)		
15 min Summer 1	15.455	0.455	15.	8 1392.0	O K	
30 min Summer 3	15.582	0.582	18.	6 1824.3	0 K	
60 min Summer 3	15.706	0.706	20.	9 2259.4	0 K	
120 min Summer 1	15.853	0.853	23.	9 2791.0	0 K	
180 min Summer 1	15.943	0.943	26.	3 3126.2	O K	
240 min Summer 1	16.004	1.004	27.	9 3359.4	OK	
360 min Summer 1	16.079	1.079	29.	9 3648.1	O K	
480 min Summer 1	16.116	1.116	30.	9 3792.4	ΟK	
600 min Summer 1	16.131	1.131	31.	3 3855.6	ОК	
720 min Summer 1	16.135	1.135	31.	4 3870.7	ОК	
960 min Summer 1	16.123	1.123	31.	1 3823.9	OK	
1440 min Summer 1	16.094	1.094	30.	3 3705.7	ОК	
2160 min Summer .	16.046	1.046	29.	0 3519.1	OK	
2880 min Summer	16.002	1.002	27.	8 3349.5	OK	
4320 min Summer	15.927	0.927	23.	8 3066.6	OK	
5760 min Summer .	15.86/ 15.000	0.867	24.	3 2841.3	OK	
7200 min Summer	15.022 15.70 <i>6</i>	0.822	23.	1 20/8.0	OK	
10080 min Summor	15./80 15.750	0.750	22.	3 2347.8 9 2444 5	OK	
15 min Winter	15./JO 15.505	0.750	21.	0 1550 6	OK	
	10.000	0.000	101		0 11	
Storm	n	Rain	Flooded T	'ime-Peak		
Event	:	(mm/hr)	Volume	(mins)		
	-	(/ /	(m ³)	(
			•			
15 min :	Summer	154.280	0.0	27		
30 min :	Summer	101.500	0.0	41		
60 min :	Summer	63.365	5 0.0	70		
120 min :	Summer	39.730	0.0	130		
180 min :	Summer	30.126	5 0.0	188		
240 min :	Summer	24.650	0.0	248		
360 min :	Summer	18.391	0.0	366		
480 min 3	Summer	14.774	0.0	484		
600 min 3	Summer	12.380	0.0	602		
720 min 8	Summer	10.670	0.0	722		
960 min 8	Summer	8.369	0.0	878		
1440 min 3	Summer	5.891	. 0.0	1110		
2160 min 3	Summer	4.113	s 0.0	1496		
2880 min 9	summer	3.190	0.0	T 208		
4320 min 9	summer	2.245	0.0	2732		
5/60 min 3	summer	1./64	± U.U	3568		
/200 min 8	Summer	1 205		4336		
0040 Min 3	Summer	. 1.29 1.1 <i>C</i> /		5050		
15 min 1	Winter	- 154 280		5952 27		
1.5 11111				21		
C	91982·	-2019]	Lnnovyze			

WSP Group Ltd						Page 2
•						
						Vice
•						MICIO
Date 02/08/2023 16:48	De	esigned	a by ss			Drainage
File 1 in 100 with 45 cc.SRCX	Cł	necked	by SBR			brainacje
XP Solutions	Sc	ource (Control	2019.1		
Summary of Results	for	100 v	ear Retu	rn Perio	od (+45%)	
	-					
Storm M	íax	Max	Max	Max	Status	
Event Le	evel	Depth I	nfiltrati	on Volume		
((m)	(m)	(1/s)	(m³)		
30 min Winter 15	.645	0.645	19	.8 2044.9	ОК	
60 min Winter 15	. /83	0.783	22	.2 2534.1	ОК	
120 min Winter 15	.945	0.945	20	· 3 3131.3	OK	
240 min Winter 16	.111	1.111	20 २0	.7 3774 2	0 K	
360 min Winter 16	.194	1.194	33	.0 4104.8	0 K	
480 min Winter 16	.235	1.235	33	.7 4275.2	0 K	
600 min Winter 16	.255	1.255	34	.0 4356.2	ОК	
720 min Winter 16	.262	1.262	34	.1 4384.3	ОК	
960 min Winter 16	.253	1.253	34	.0 4345.7	0 K	
1440 min Winter 16	.211	1.211	33	.3 4173.8	0 K	
2160 min Winter 16	.150	1.150	31	.8 3930.6	0 K	
2880 min Winter 16	.092	1.092	30	.2 3698.4	ОК	
4320 min Winter 15	.990	0.990	27	.5 3304.2	OK	
7200 min Winter 15	.907 877	0.907	20	-3 2991./ 7 2758 /	OK	
8640 min Winter 15	.792	0.792	2.2	.4 2568.3	0 K	
10080 min Winter 15	.748	0.748	21	.6 2409.9	0 K	
Storm		Rain	Flooded	Time-Peak		
Event		(mm/hr)	Volume	(mins)		
			(m³)			
		101 500	0.0	4.1		
SU MIN WI	nter	TOT.200	0.0	41 70		
00 min Wi 120 min Wi	nter	39.730	0.0	128		
180 min Wi	nter	30.126	0.0	186		
240 min Wir	nter	24.650	0.0	244		
360 min Win	nter	18.391	0.0	358		
480 min Wi	nter	14.774	0.0	474		
600 min Wi	nter	12.380	0.0	588		
720 min Wi	nter	10.670	0.0	700		
960 min Win	nter	8.369	0.0	914		
1440 min Win	nter	5.891	0.0	1144		
2160 min Wir	nter	4.113	0.0	1604		
2880 min Wi 1320 min Wi	nter	3.19U 2 2/5	0.0	2052		
	nter	2.243	0.0	3808		
7200 min Wi	nter	1.483	0.0	4616		
8640 min Wir	nter	1.297	0.0	5448		
10080 min Wi	nter	1.166	0.0	6256		
	0.0.0	0.01.5				
©1	982-	-2019 I	nnovyze			

· · Date 02/08/2023 16:48 Designed by SS Designed
· · Date 02/08/2023 16:48 Designed by SS Designed
Date 02/08/2023 16:48 Designed by SS
File 1 in 100 with 45 cc.SRCX Checked by SBR
XP Solutions Source Control 2019.1
<u>Rainfall Details</u>
Return Period (years) 100
FEH Rainfall Version 2013
Site Location GB 614750 315400 TG 14750 15400 Data Type Catchment
Summer Storms Yes
Winter Storms Yes Cv (Summer) 0.750
Cv (Winter) 0.840
Shortest Storm (mins) 15
Climate Change % +45
Time Area Diagram
Time Area Diagram
TOTAL Area (na) 4.860
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)
0 4 1.620 4 8 1.620 8 12 1.620
©1982-2019 Innovyze

WSP Group Ltd		Page 4
• •		Micro
Date 02/08/2023 16:48	Designed by SS	Deainago
File 1 in 100 with 45 cc.SRCX	Checked by SBR	Diamage
XP Solutions	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 17.000

Infiltration Basin Structure

Invert Level (m) 15.000 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.43200

Depth (m)	Area (m²)						
0.000	2697.0	1.400	4176.0	2.800	0.0	4.200	0.0
0.200	3050.0	1.600	4403.0	3.000	0.0	4.400	0.0
0.400	3301.0	1.800	4634.0	3.200	0.0	4.600	0.0
0.600	3480.0	2.000	4869.0	3.400	0.0	4.800	0.0
0.800	3619.0	2.200	0.0	3.600	0.0	5.000	0.0
1.000	3834.0	2.400	0.0	3.800	0.0		
1.200	4053.0	2.600	0.0	4.000	0.0		

WSP Group Ltd					Page 1
•					
					Micco
Date 02/08/2023 17:00	Designe	ed by SBR			
File 1 IN 30 WITH 40 CC	Checker	by SG			Urainage
XP Solutions	Source	$\frac{1}{2}$	019 1		
	Source	CONCLOT 2	019.1		
Summary of Deculta t	for 20	oor Dotur	Dorio	4 (+10%)	
<u>Summary of Results i</u>	<u>101 30 y</u>	ear Keturi	I FELLO	$\frac{1}{1}$ (740%)	
Half Dra	in Time •	1200 minute	9		
		1200			
Storm Ma	x Max	Max	Max	Status	
Event Lev	el Depth	Infiltration	n Volume		
(m) (m)	(1/s)	(m³)		
15 min Summer 15.3	344 0.344	12.9	9 1027.4	ОК	
30 min Summer 15.4	138 0.438	15.5	5 1336.2	ΟK	
60 min Summer 15.5	530 0.530	17.5	5 1644.8	O K	
120 min Summer 15.6	637 0.637	19.7	7 2015.3	O K	
180 min Summer 15.6	597 0.697	20.7	7 2228.5	O K	
240 min Summer 15.7	736 0.736	21.4	4 2367.7	ΟK	
360 min Summer 15.7	781 0.781	22.2	2 2528.3	O K	
480 min Summer 15.7	/99 0.799	22.5	2592.7	O K	
600 min Summer 15.8	305 0.805	22.0	5 2613.5	OK	
/20 min Summer 15.8	303 0.803	22.0	5 2609./	OK	
960 min Summer 15.7	794 0.794	22.4	± 23/3.8	OK	
2160 min Summer 15.7	774 0.774	22.	5 2305 8	OK	
2880 min Summer 15.7	717 0 717	21.	1 2299 6	O K O K	
4320 min Summer 15.6	575 0.675	20.3	3 2149.8	0 K	
5760 min Summer 15.6	540 0.640	19.	7 2027.8	ОК	
7200 min Summer 15.6	510 0.610	19.2	2 1920.7	ОК	
8640 min Summer 15.5	585 0.585	18.7	7 1834.1	ΟK	
10080 min Summer 15.5	564 0.564	18.2	2 1764.3	O K	
15 min Winter 15.3	382 0.382	14.1	1 1151.0	ΟK	
Storm	Pain	Flooded T	imo-Posk		
Event	(mm/hr) Volume	(mins)		
	,,	(m ³)	()		
15 min Summ	ner 113.96	0.0	27		
30 min Sumn	uer /4.44	y U.U	41 70		
00 mi⊥n Summ 120 min Summ	ner 28 97	5 0.0	/U 1 2 0		
180 min Summ	ner 20.02	5 0.0	188		
240 min Summ	ner 17.49	8 0.0	248		
360 min Summ	ner 12.86	2 0.0	366		
480 min Summ	ner 10.21	4 0.0	484		
600 min Summ	ner 8.50	5 0.0	602		
720 min Summ	ner 7.30	8 0.0	720		
960 min Summ	ner 5.74	0.0	840		
1440 min Summ	ner 4.06	4 0.0	1082		
2160 min Summ	ner 2.87	9 0.0	1476		
2880 min Summ	ner 2.26	5 0.0	1884		
4320 min Summ	ner 1.64	4 0.0	2720		
5760 min Summ	ner 1.32	5 0.0	3520		
7200 min Sumn	ner 1.12	/ 0.0	4320		
8640 min Summ	uer 0.99	S U.U	5096		
15 min Wint	uei 0.89 -er 113 96	0 0.0	2040 26		
	00 0010		20		
©198	82-2019	⊥nnovyze			

WSP Group Ltd						Page 2
•						
						Micco
$D_{2} = 0.2 / 0.8 / 20.23 + 1.7 \cdot 0.0$	г	Dogiano	hr CDD			
Date 02/00/2023 1/.00						Drainage
FILE I IN 30 WITH 40 CC		Ineckea	by SG			J
XP Solutions	S	Source (Control 2	019.1		
Summary of Result	s fo	<u>r 30 ye</u>	ar Returr	n Perio	d (+40응)	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth I	infiltration	Nolume		
	(m)	(m)	(1/s)	(m ³)		
30 min Winter 1	15.486	5 0.486	16.5	5 1497.7	ОК	
60 min Winter 1	15.588	3 0.588	18.8	1844.6	ОК	
120 min Winter 1	15.707	7 0.707	20.9	2262.9	ОК	
180 min Winter 1	15.775	5 0.775	22.1	2505.2	ΟK	
240 min Winter 1	15.818	3 0.818	23.0	2664.3	O K	
360 min Winter 1	15.869	9 0.869	24.3	3 2849.1	0 K	
480 min Winter 1	15.890	0.890	24.9	2925.8	ОК	
600 min Winter 1	15.897	/ 0.897	25.1	2954.8	ОК	
720 min Winter 1	15.898	5 U.898	25.1	2957.3	O K	
960 min Winter 1	LJ. 885	9 U.889 1 0 961	24.8	2922.9	O K	
2160 min Winter 1	15 821	L U.801 I O 821	24.1	2673 0	0 K	
2880 min Winter 1	5 782	2 0 782	23.1	2531 7	0 K	
4320 min Winter 1	5.717	7 0.717	21.1	2298.5	0 K	
5760 min Winter 1	15.663	3 0.663	20.1	2107.0	ОК	
7200 min Winter 1	15.616	5 0.616	19.3	3 1943.0	ОК	
8640 min Winter 1	15.578	3 0.578	18.5	5 1810.7	ОК	
10080 min Winter 1	15.546	6 0.546	17.8	3 1702.2	0 K	
Storm		Rain	Flooded Ti	ime-Peak		
Event		(mm/hr)	Volume	(mins)		
			(m³)			
30 min 14	Jinter	r 71 119	0 0	41		
60 min W	Vinter	r 46 246	0.0	70		
120 min W	Vinter	28.825	0.0	12.8		
180 min W	Vinter	r 21.605	0.0	186		
240 min W	Vinter	r 17.498	0.0	242		
360 min W	Vinter	r 12.862	0.0	358		
480 min W	Vinter	r 10.214	0.0	474		
		r 8 505	0 0			
600 min W	vincer	0.000	0.0	586		
600 min W 720 min W	Vinter	r 7.308	0.0	586 696		
600 min W 720 min W 960 min W	Vinter Vinter Vinter	r 7.308 r 5.740	0.0	586 <mark>696</mark> 906		
600 min W 720 min W 960 min W 1440 min W	Vinter Vinter Vinter	r 7.308 r 5.740 r 4.064	0.0	586 696 906 1128		
600 min W 720 min W 960 min W 1440 min W 2160 min W	Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.879	0.0 0.0 0.0 0.0	586 696 906 1128 1588		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W	Vinter Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.879 2.265	0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W	Vinter Vinter Vinter Vinter Vinter Vinter	7.308 5.740 4.064 2.265 1.644	0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.265 1.644 1.325 7.127	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter	r 7.308 r 5.740 r 4.064 r 2.265 r 1.644 r 1.325 r 1.127 r 0.993	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752 4544 5360		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W 8640 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter	r 7.308 r 5.740 r 4.064 r 2.879 r 2.265 r 1.644 r 1.325 r 1.127 r 0.993 r 0.898	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752 4544 5360 6152		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W 8640 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.879 2.265 1.644 1.325 1.127 0.993 c.0.898	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	586 696 906 1128 1588 2048 2904 3752 4544 5360 6152		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W 8640 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.879 2.265 1.644 1.325 1.127 0.993 0.898	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752 4544 5360 6152		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W 8640 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.879 2.265 1.644 1.325 1.127 0.993 0.898	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752 4544 5360 6152		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W 8640 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.879 2.265 1.644 1.325 1.127 0.993 0.898	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752 4544 5360 6152		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W 8640 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.879 2.265 1.644 1.325 1.127 0.993 0.898	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752 4544 5360 6152		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W 8640 min W 10080 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter	7.308 7.308 5.740 4.064 2.879 2.265 1.644 1.325 1.127 0.993 0.898	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752 4544 5360 6152		
600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 7200 min W 10080 min W	Vinter Vinter Vinter Vinter Vinter Vinter Vinter Vinter	-2019 I	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	586 696 906 1128 1588 2048 2904 3752 4544 5360 6152		

WSP Group Ltd		Page 3
•		
•	Micro	
Date 02/08/2023 17:00	Drainage	
File 1 IN 30 WITH 40 CC	Checked by SG	Brainage
XP Solutions	Source Control 2019.1	
Ra	infall Details	
Rainfall Mod	e] FEH	
Return Period (year	s) 30	
FEH Rainfall Versi	on 2013	
Site Locati Data Ty	on GB 614750 315400 TG 14750 15400	
Summer Stor	ms Yes	
Winter Stor	ms Yes	
Cv (Summe	r) 0.750	
Shortest Storm (min	s) 15	
Longest Storm (min	s) 10080	
Climate Change	% +40	
Tin	ne Area Diagram	
Tot	al Area (ha) 4.860	
Time (mins) Area T From: To: (ha) Fr	ime (mins) Area Time (mins) Area rom: To: (ha) From: To: (ha)	
0 4 1.620	4 8 1.620 8 12 1.620	
	l l	
<u></u>	82-2019 Innow/20	
0198	νς τοτό τυμολλας	

WSP Group Ltd		Page 4
• • •		
Date 02/08/2023 17:00	Designed by SBR	Drainago
File 1 IN 30 WITH 40 CC	Checked by SG	Diamage
XP Solutions	Source Control 2019.1	·

Model Details

Storage is Online Cover Level (m) 17.000

Infiltration Basin Structure

Invert Level (m) 15.000 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.43200

Depth (m)	Area (m²)						
0.000	2697.0	1.400	4176.0	2.800	0.0	4.200	0.0
0.200	3050.0	1.600	4403.0	3.000	0.0	4.400	0.0
0.400	3301.0	1.800	4634.0	3.200	0.0	4.600	0.0
0.600	3480.0	2.000	4869.0	3.400	0.0	4.800	0.0
0.800	3619.0	2.200	0.0	3.600	0.0	5.000	0.0
1.000	3834.0	2.400	0.0	3.800	0.0		
1.200	4053.0	2.600	0.0	4.000	0.0		